
142 INZHENERNO- FIZICHESKII ZHURNAL 

APPROXIMATE DETERMINATION OF CONDUCTIVITY IN TWO-DIMENSIONAL 
(PLANE) FIGURES 

V. S. Novopavlovski i  

I n z h e n e r n o - F i z i c h e s k i i  Zhurnat ,  Vol. 14, No. 2, pp. 273-281,  1968 

UDC 536.2.01 

Justification and examples are provided for the utilization of a method 
to evaluate the conductivity in two-dimensional figures of complex 
shape. Two methods are proposed for the derivation of approximate 
conductivity formulas. 

Given a body of infini te length and constant  c r o s s  
sec t ion ,  having a s t eady  d i s t r ibu t ion  of potent ia l  (with 
two isopotent ia[  s u r f a c e s  bounding the  body) and sub-  
j ec t  to the Laplace  equation under  boundary  condi t ions 
of the 1 -s t  kind, we solve  the p r o b l e m  of the d i s t r i b u -  
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F ig .  1. Demons t r a t i on  of the ma in  s t a tement  of 
the d iv is ion  method (here  and subsequent ly ,  the 
bold l ines  show boundary  i s o t h e r m s ) :  a) f igure  
d iv i s ion  with ad iaba t ic  l ine;  b) compos i t e  f igure  

in coo rd ina t e s  ql, q2. 

t ion of the potent ia l  in such a body s imply  by examining 
the two-d imens iona l  f igure  which s e r v e s  a s  the l a t e r a l  
c r o s s  sect ion.  The conduct ivi ty  of the  two-d imens iona l  
f igure  is unde r s tood  to be a p u r e l y  g e o m e t r i c  quanti ty 
(the shape fac tor  [1]), d i r e c t l y  p ropo r t i ona l  to the flow 
of energy  o r  m a t t e r  p e r  unit  length of the c o r r e s p o n d -  
ing body and i n v e r s e l y  p ropor t iona l  to the d i f fe rence  
in po ten t ia l s  at the  boundar i e s  and to the co r r e spond ing  
t r a n s p o r t  coeff ic ient .  F o r  d e t e r m i n a c y  we wil l  speak ,  
in the following, of a t e m p e r a t u r e  f ie ld  and a heat  flux 
Q through the so l id  body with a constant  coeff ic ient  of 
t h e r m a l  conduct ivi ty  X, so that  the conduct ivi ty  I1 i s  
defined f rom the equation Q = ~ l A t .  In the fo rmu la t e d  
s t a t emen t  of the p r o b l e m ,  the purpose  of the eng i -  
nee r ing  ca lcu la t ion  is  gene ra l l y  the de t e rmina t ion  of 
conduct ivi ty .  Here  it is suff ic ient  to f ind the conduc-  
t iv i ty  of t h e  two-d imens iona l  f igure  which m a k e s  up a 
p a r t  of the  l a t e r a l  c r o s s  sec t ion  of the body and is 
bounded by two i s o t h e r m s  and by two ad iaba t ic  cu rves ,  
drawn with cons ide ra t ion  of the condit ions of s y m m e t r y  
for  the t e m p e r a t u r e  f ie ld .  

Exact  f o r m u l a s  for  the ca lcu la t ion  of conduct ivi ty  
ex i s t  only fo r  such compara t i ve ly  s imple  f igures  as ,  
for  example ,  a r ec t ang l e  and a s e c t o r  of a concent r ic  
r ing.  F o r  f igures  of g r e a t e r  complex i ty  i t  b ecome s  
n e c e s s a r y  to r e s o r t  to phys ica l  mode l ing  o r  the t e -  
dious ca lcu la t ion  of the  t e m p e r a t u r e  f ie ld  by a n u m e r -  
ica l  method.  P a r t i c u l a r l y  p roduc t ive ,  in our opinion, 

is  the method of the  app rox ima te  ca lcula t ion  of con-  
duct ivi ty  employed  in [2-4] with r e s p e c t  to the c a l c u -  
la t ion of insula t ion  in e l e c t r i c a l  equipment.  That 
method is  based  on the d iv i s ion  of a complex  f ig -  
u r e  by means  of ad iaba t i c  and i s o t h e r m a l  l ines  into 
s imple  pa r t s ;  th is  i s  then followed by the d e t e r m i -  
nation of conduct ivi ty  in the compos i t e  f igure  on the 
b a s i s  of wel l -known fo rmulas .  The c l e a r  advantage 
of th is  method l i e s  in i t s  s imp l i c i t y  and g r e a t e r  
gene ra l i t y ,  r e l a t i v e  to the n u m e r i c a l  method and 
the method of model ing.  The method makes  i t  p o s -  
s ib le  to e s t ab l i sh  an app rox ima te  f o r m u l a  for  the 
conduct ivi ty  of an en t i r e  c l a s s  of s i m i l a r  f i g u r e S ,  
with changes only in the i r  g e o m e t r i c  p a r a m e t e r s .  
Unfortunately,  this  method was employed in the 
c i ted  r e f e r e n c e s  without any jus t i f ica t ion ,  nor  wi th-  
out any r e f e r e n c e  to i ts  a p p r o x i m a t e  nature .  An 
a t t empt  is  made  h e r e  to p rov ide  a r i g o r o u s  founda-  
t ion for  the method of d iv i s ion  and fo r  i t s  subsequent  
development .  

We will  adopt  a s y s t e m  of i s o t h e r m s  and ad iaba t ic  
cu rves  ( s t r e a ml ine s )  in a two-d imens iona l  f igu re  a s  
an or thogonal  c u r v i l i n e a r  sy s t em of coord ina tes  ql = t, 
q2 = 0, whe re  t is  the t e m p e r a t u r e  and r is  the  s t r e a m  
function. We wil l  w r i t e  the f a m i l i a r  Lap lace  equation 
fo r  th is  new coord ina te  sy s t em [5] a s  fol lows:  

o /n ,  o t )+  o [ / t ,  o t _ ) = o .  
Oq~ I H10ql]  ~ ~ H, Oq,] 

(1) 

Here  H 1 and H 2 a r e  funct ions of the new coo rd ina t e s ,  
defined by the equa l i t i e s  

dsl = Hldql; ds: = H2dq2, (2) 

whe re  ds 1 and ds  2 a r e  the d i f f e r en t i a l s  of the a r c  fo r  
the ad iaba t ic  cu rve  and the i so the rm,  r e s p e c t i v e l y .  

Accord ing  to the defini t ion of the new coord ina te  
s y s t e m  

O t  at 
- - - - 1 ;  - - = 0 .  
aq, aq~ 

Then, i t  fol lows f rom (1) that  

Oq~ 

By exchanging the loca t ions  of the i s o t h e r m s  and the 
ad iaba t ic  cu rves  in the  spec i f i ed  f igure  (this opera t ion  
wilt  subsequent ly  be known as  t r anspos i t ion) ,  we 
de r ive  a f igure  for  which the s t r e a m  function ~b s a t -  
i s f i e s  the Laplace  equation.  On the b a s i s  of c o n s i d e r a -  
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t ions analogous to the above, for a t r ansposed  f igure 
we der ive  

0 

Oq~ 

It follows f rom the las t  two equations that the functions 
H i and H 2 can be p resen ted  in the form 

H~ = mf (q~, q~); H~ = nf (q~, q~), (3) 

where  m and n a re  constants  and f is a function. 
Using the coordinate  sys tem (ql, %), we find an 

express ion  for the conductivity H of the given f igure.  
By means  of two adiabat ic  curves  in proximity  to each 
other  we isolate a s t r ip  connecting the boundary i so -  
t h e r m s .  It is not difficult  to demons t ra te  that the con-  
ductivity of this  s t r ip - -wi th  cons idera t ion  of (2)--is 
equal to 

�9 �9 - - ~ d q l  a , 

ql ql 

where q[ and q~' a re  the values of the coordinate ql on 
the boundary  i so the rms .  The conductivity of the en t i re  
f igure is thus 

4 
H =  ,J~ q~ dq~ 

q2 ; H1 

ql 

Here q~ and q~' a re  the values of the coordinate q2 on 
the boundary adiabat ic  curves .  Having subst i tuted H i 
and H 2 into this formula  according to Eqs.  (3), we 
obtain 

(G - q~) 
I I =  

m (q'; - -  ql) (4) 

This  resu l t  cor responds  to the fact that the specif ied 
two-d imens iona l  f igure in the new coordinates  is t r a n s -  
fo rmed  into a rec tangle  whose s ides - -g iven  an appro -  
pr ia te  choice of scale  for the v a r i a b l e s - - a r e  equal to 
q~' - q�89 (for the i so therms)  and q[' - q[ (for the adia-  
batic curves) .  

The a r ea  of this f igure  in coordinates  (ql,q2) is 
expressed  by the formula  

~'; q < q 
S =  ~ .;dslds, = mn ~ Sf ' (q : '  q,)dq, dq2. (5) 

q, % q~ q2 

The p r e l i m i n a r y  r e m a r k s  which we have made 
make it  poss ib le  to demons t ra t e  the following funda-  
menta l  s ta tement .  If a plane f igure is subdivided by an 
a r b i t r a r y  adiabat ic  l ine which does not coincide with 
the adiabatic  curve of the given f igure,  the conduct iv-  
ity of the new composi te  f igure will be less  than that 
of the or iginal  f igure.  Since any plane figure in c o r r e -  
sponding coordinates  r ep re sen t s  a rec tangle ,  it is 
suff icient  to prove this  s ta tement  for the case in which 
the or iginal  f igure is a rec tangle  and the boundary of 
separa t ion  is not a segment  of the s t ra ight  l ine p e r -  

pendieular  to the i so thermal  s ides of the rectangle  
(Fig. la). 

In analogy with the foregoing, for f igures  I and II 
we wil l  introduce a new coordinate  sys tem (ql, %) in 
which the f igures  will be in the form of rec tangles .  
The or igin  and scale of the independent var iab les  ql 
and q2 can always be chosen so that these rec tangles  
a re  si tuated as shown in Fig. lb .  We will  also a s sume  
that 

q';--ql 6. (6) 

Genera l ly  speaking,  for  f igures  I andI I the  express ions  
for H i and H 2 will be different.  For  f igure I, let these 
express ions  have the form of (3), white for f igure II 

H~: =MF(q: ,  q~); H~J = NF(q~, q~). (7) 

The total  conductivity of f igures  I and II according to 
formula  (4), with cons idera t ion  of (7) and (6), 

H ~ = H : +  H H - n N . .  ~ 

It mus t  therefore  be demons t ra ted  that the conductivity 
of the or iginal  rec tangle  l/6 is g rea te r  than [Is, i . e . ,  

N 
t > n (q~ _ q~) + M (q~ _ q2 ). (8) 

m 

Having der ived the express ion  for the total a rea  of the 
f igures  I and II in the new coordinates  f rom formula  
(5) with cons idera t ion  of (7) and having t r a n s f o rmed  
the cor responding  double in tegra l s  by us ing  the m e a n -  
value theorem,  we will  have 

< 
l 6 = mn (q~ - -  q~) I [2 (ql, q~) dql + 

ql 
< 

+ MN (q'~ - -  q~) S F- (q~, q~r) dq,, 
q[ 

where 

Let us use  the Bunyakovskii  inequali ty [5] for the in te -  
gra l  of the square  of the function; the las t  express ion  
is then t r a n s f o r m e d  into the inequali ty 

q; 
1 6 >  mn(q~--q~) [ J ' f(ql ,  q~)dql] ~ 

q1 - -  q: 
ql 

< 
: -, F (q:, q~!) dq: . (9) 

+ q l  - -  q :  , 

q! 

It is not difficult  to prove that the b racke t s  contain 
quant i t ies  propor t ional  to the length of cer ta in  of the 
mean  adiabat ic  curves  in the corresponding f igures .  
For  example,  for f igure I the length of the adiabat ic  
curve is equal to 

ql qi ql 
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It follows di rec t ly  f rom Fig.  l a  that the sma l l e s t  
length equal to 5 is exhibited by the adiabat ic  curves  
when q2 = q2 and qz = qx'. Replacing the in tegra ls  in 
inequali ty (9) by s m a l l e r  quant i t ies  5 / m  and 5 /M,  
cancel ing like t e r m s ,  and cons ider ing  condition (6), 
we der ive  inequali ty (8) which may consequently be 
regarded  as proved. 

The r e s i s t ance  R* of the t r ansposed  figure may 
therefore  be demons t ra ted  by means  of formula  (4) to 
be equal to the conductivity of the or iginal  f igure ,  i .e. ,  

1 
II = R* - (10) 

II* 

Plot t ing the adiabat ic  boundar ies  of separa t ion  on the 
plane f igure under  considera t ion and calculat ing the 
conductivity of the composi te  f igure,  we thus obtain 
the lower bound for N. Analogous operat ions for the 
t r ansposed  f igure--with re la t ion  (10)--yield the upper  
es t imate  for II. Appropria te  se lec t ion of the divis ion 
method re su l t s  in the convergence of these  bounds to a 
point such that the de te rmina t ion  of II by any of the 
methods is sufficiently accura te  for p rac t i ca l  purposes .  
In this case,  if a wall  of insula t ion is being calculated 
for indus t r ia l  appl icat ions ,  the upper  bound should be 
employed; however,  if the wall is intended for conduc- 
t ion, the lower bound should be used to achieve a so lu-  
t ion "with a marg in  of e r r o r . "  

By means  of the divis ion method, let  us find the ap-  
proximate  formulas  to calculate the conductivi t ies  of 
seve ra l  plane f igures .  

For  a corrugated  wail  (see, for example,  [6]), a 
pa ra l l e log ram may serve  as the s imples t  e lement  of 
the wall.  We will denote the sides of this pa ra l l e log ram 
by a ( isotherms)  and b (adiabatic curves) ,  with the 
acute angle denoted by ce. 

It follows f rom (10) that if the f igure is not a l t e red  
�9 in the t ranspos i t ion ,  its conductivity N = 1. Any pa ra l -  
l e logram when a = b, i . e . ,  a rhombus,  is therefore  
a uni t  f igure.  When a/b = O, obviously II = 0. We wil l  
cons ider  only the p a r a l l e l o g r a m s  in the in terva l  0 < 
< a/b < 1. When a/b > 1, the conductivity can be found 
from'(10) .  

Let us divide the given figure into na r row s t r ips  by 
means  of a sys tem of s t raight  l ines ,  pa ra l l e l  to the 
boundary adiabatic  curves ,  and let  us replace each 
s t r ip  by a rec tangle  whose sides are  equal to s in ~da 
and b + cos ada, and for which the conductivity is l e s s  
than the conductivity of the s t r ip  and equal to dII = 
= sin ~da (b + cos ada) -1. As da --* 0, dII ~ sin ~(da/ 
/b) .  The conductivity of the composite f igure der ived 
by in tegrat ion of dN in l imi t s  f rom 0 to a, thus yields 
the lower es t imate  for the conductivity of the p a r a l -  
l e logram 

I I ~  a sina. (11) 
b 

The t ransposed  f igure wil l  be a pa ra l l e log ram having 
boundary i so the rms  b and adiabatic curves  a, with 
b > a. Let us cons ider  the pa ra l l e lograms  with the 
integral  rat io b/a = i, and which can be divided by 
means  of the adiabat ic  l ines  into i pa ra l l e l  included 
rhombi.  According to the fundamental  s ta tement  of the 
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method, for such f igures  II* > b/a. Assuming  that N* 
as a function of b/a is monotonic,  we can make the 
s ta tement  that for any b/a > 1, N* > b/a. The upper  
es t imate  for the pa ra l l e log rams  under  cons idera t ion  
is therefore  

n = ! < & .  (12) 
H* b 

The max imum divergence between es t imates  (11) and 
(12) when a/b = i and a = r / 4  does not exceed 15%; 
for hea t -eng ineer ing  calculat ions  this is acceptable.  
However, it is possible  to achieve a much more  exact 
solution of the problem by der iv ing an in terpola t ional  
formula  on the bas i s  of the method descr ibed  below. 
We know that one is the exact value of N for the p a r -  
a l le logram when a = b. Let us find the rectangle  with 
the same dis tance between the boundary adiabat ic  
curves  and exhibit ing the same conductivity as the 
rhombus.  This  will obviously be a square  whose s ides 
a re  equal to a s in  a .  Having es tabl i shed the length of 
the boundary i so the rms  for the two f igures  and having 
also es tabl ished a ,  we wil l  i nc rease  the length of the 
boundary adiabatic  curves ,  re ta in ing a specific r e l a -  
t ionship between these.  We will  r e f e r  to these  two 
f igures  as connected. The form of the connection,  i .e . ,  
the form of the re la t ionship  between the length of the 
boundary adiabat ic  curves ,  mus t  be chosen so that the 
conductivity of the connected f igures  coincides at  leas t  
for one value of a geometr ic  pa r ame te r .  If the exact 
fo rmula  for II is known for one of the f igures ,  it can 
serve as an approximate formula  for the II of another  
f igure which is more  complex. 

For  the connected pa ra l l e log ram and rec tangle  we 
wil l  a s sume  that the difference between the length of 
the boundary adiabatic  curves  r e ma i ns  constant .  The 
length of the adiabatic  curve for the rectangle  is thus 
equal to b - a(1 - s in  ~) and for a/b -< 1 the conduc-  
t iv i ty  of the pa ra l l e log ram is 

as ina sina (13) 
H ~  b--a(1--s ina)  = b + s i n a _ _  1 " 

a 

It is not difficult  to prove that according to fo rmula  
(13) the value of II does not exceed the l imi t s  of e s t i -  
mates  (11) and (12), while for a /b  = 0 formula  (13) 
yields an exact value of N = 0. Control  ca lcula t ions  
for  the pa ra l l e logram conductivi t ies  with in te rmedia te  
values of a/b by means  of a network method demon-  
s t ra ted  the high accuracy  of formula  (13) over  the 
ent i re  in terval  0 -< a/b <- 1. For  example,  when a/b = 
= 0.5 and a = v/4,  the II calculated f rom formula  (13) 
and the magnitude of I1 der ived numer i ca l l y  for a ne t -  
work gr id of b/14,  differ  by less  than 3%. 

The p rob lem of the conductivity in a closed shell  
bounded in the l a te ra l  c ross  sect ion f rom within and 
without by concent r ic  regu la r  polygons cal ls  for con- 
s idera t ion  of a rec tangular  t rapezoid.  We wil l  denote 
the bases  ( isotherms)  of the t rapezoid  as a and b (a < 
< b), while the acute angle formed by the boundary 
adiabatic  curves  is denoted by ~. The method of d i -  
viding this f igure becomes  c lear  f rom Fig.  2a. Re -  
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placing each strip by a sector of the concentric ring 
and calculating the conductivity of the composite figure, 
we derive the lower estimate for the conductivity of 
the trapezoid: 

H >  i d~ _ a 
In --b In __b" 

a a (14) 

The divis ion of the t r ansposed  figure is shown in Fig.  
2b. Here we obtain s t r ips  of constant  width dx, as 
dx ~ 0 exhibit ing a length a + ~x. The es t imate  for the 
conductivity of the t ransposed  figure is 

H * >  

(b--a) ctg a 
dx _ 

f a+~x 

Consequently, the conductivity of the given figure is 
bounded from above by the inequality 

H < a ( i 5 )  

I n [ l + a ( b - - l )  ctga] " 

The max imum divergence  in the e s t ima tes  for  ~ = r / 4  
is a t ta ined when b /a  = 1.1 and amounts  to 20%. The 
quanti ty a/b may vary f rom 0 to 1. Each of the e s t i -  
mates  yields  ident ical  values  for II at the ends of this 
in terval .  For  the der iva t ion  of the in terpola t ional  fo r -  
mula  we have to know at [east one other value of H 
within the in terva l .  For  this purpose ,  let us cons ider  

tween the adiabatic  curves  denoted by (~. It follows 
f rom the above that for  such a figure II = 1. Let us 
complete the t r ans i t ion  from the figure ABCD to a 
t rapezoid of the same a rea  of the same i so therm length 
(B'C' = BC), and the same average  length for the bound- 
a ry  adiabatic curves  (BB' = CC').  With this t rans i t ion ,  

a 

# 

M 

Fig.  3. Wall  e lement  with conductors  of 
rec tangula r  sect ion.  

the conductivity undergoes  no substant ia l  change. It is 
therefore  possible  to a s sume  that for all  t rapezoids  
with a/b = tg((v/4)  - (~/2)) ,  I1 ~ 1. As a f igure con- 
nected with the t rapezoid ,  let us take the sector  of the 
concent r ic  r ing  with the centra l  angle ~,  and as the 

form of the connection we will  take the function (b /a) /  
/ ( r 2 / r  I) = const ,  where  r2 / r  1 is the rat io of the r ing  
radi i .  F o r  the sec tor  II = 1, r2 / r  1 = expc~. The ap-  
proximate  formula  for the conductivity of the t rapezoid 
will then have the form 

Q 

"1 

c 

8 c 

L ~  t? D 

Fig.  2. Approximate de te rmina t ion  of conductivity of 
rec tangula r  t rapezoid:  a) d iv is ion of given t rapezoid,  
b) divis ion of t ransposed  t rapezoid;  c) t rapezoid 

de te rmina t ion  with II ~ 1. 

the f igure ABCD (Fig. 2e) in which the sides AB and 
CD are  adiabat ic  curves ,  BC and AD a re  i so the rms ,  
with AD =- CD = b and AB = BC = a, and the angle be -  

H ~  - -  a (16) 

F o r mu l a  (16) yields  excel lent  r esu l t s  for a/b <- 
- tg((~/4) - (a /2) ) ,  but with a/b close to 1, the values 
of II calculated f rom this formula  exceed the l imi t s  of 
es t imate  (15). F o r  the connected figure it is therefore  
be t t e r  to se lect  a rectangle  in which the length of the 
adiabatic curve  is equal to the height h of the t rapezoid:  
Having es tabl i shed h and a ,  we wilt inc rease  the lengths 
of the boundary i so the rms  of the connected f igures ,  
re ta in ing  a constant  difference.  As a resu l t ,  we der ive  
the following interpola t ional  formula  for a/b >_ tg((a/4 - 

- ( a / 2 ) ) :  

H ~ l + t g a  _bb __1 ctg __ a a ~ - - I  

F o r m u l a s  (16) and (17) have been checked for v a r i -  
ous values of a and a/b by de te rmin ing  the value of II 
through a numer ica l  method. The agreement  of the 
r e su l t s  is excel lent .  Thus,  when a = v/4  and a/b = 0.5, 
the divergence in the magnitude of II amounts  to ~1%, 
while for a/b = 0.1, it is approximate ly  4% (the ne t -  
work spacing was taken as equal to 0.1b). 
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Let  us point  to ye t  another  method of der iv ing  the 
app rox ima te  fo rmula  for  the conduct ivi ty  of complex  
f i gu re s .  We wil t  examine  th is  method by ca lcu la t ing  
the  insula t ion within which rows of p a r a l l e l  r e c t angu la r  
conduc tors  a r e  pos i t ioned  un i formly  [3]. The p rob l e m 
reduces  to the de t e rmIna t i on  of the conduct ivi ty  of the 
two-d imens iona l  f igure  shown in F ig .  3. We wi l l d iv ide  
th i s  f igure  into t h r e e  p a r t s  by means  of the i s o t h e r m a l  
l ine MN and with the ad iaba t ic  l ine KM. It fol lows f rom 
the above that  the f i r s t  opera t ion  i n c r e a s e s  conduct iv-  
i ty ,  white the second opera t ion  r educes  the conduct iv-  
i ty of the de r i ved  compos i t e  f igure ,  r e l a t ive  to the 
o r ig ina l  f igure .  However ,  s ince  the l ines  MN and KM 
a r e  c lose  to the i s o t h e r m  and to the ad iaba t i c  curve of 
the given f igure  (we can prove  this  by us ing  the f a m i l -  
i a r  method of cons t ruc t ing  i s o t h e r m s  and ad iaba t ic  
cu rves  [6]), we should expect  the conduct ivi ty  of the 
o r ig ina l  f igure  to be a p p r o x i m a t e l y  equal to the con-  
duct ivi ty  of the o r ig ina l  f igure  to be app rox ima te ly  
equal to the conduct ivi ty  of the compos i t e  f igure :  

II ~ H I + (R n + Rm) -~ = 111 + H H 

Here  RIII = 0, s ince  the boundary  i s o t h e r m s  in f igure  
III touch. F i g u r e  I is a r ec tang le  and f igure  II i s  a 
t r a n s p o s e d  t r apezo id .  U s i n g  Eqs.  (10), (16), and (17), 
with the denota t ions  of F ig .  3, we d e r i v e  

H .-~ __a + arctg x 
C 

[(_~ ) d ] + l  (18) x ln  +1 b - / - ~  

for  

b b + r / b 2 + d ~ 
- - >  . . . .  1; 
c d 

H ~ - - - a  + ( I +  c 
c b ) - '  
a b - - d + ~  (19) 

for  

F o r m u l a s  (18) and (19) have been checked by a n u m e r -  
ica l  method.  F o r  sma l l  va lues  of d / b  we find the 
r e su l t s  to be in exce l l en t  a g r e e m e n t .  F o r  example ,  
when a = 3, b = 6, c = 4, and d = 2 the ca lcu la t ion  by  a 
n u m e r i c a l  method for  a ne twork  spacing of 0.5d y ie lds  
H = 1.170, w h e r e a s  accord ing  to f o rmu la  (19) we have 
II = 1.163. 

NOTATION 

Q is  the hea t  f lux;  k is the t h e r m a l  conduct ivi ty;  
t is  the t e m p e r a t u r e ;  r is  the s t r e a m  function; ql and 
q2 a r e  the or thogonai  c u r v i l i n e a r  coord ina tes  which 
coincide with the s y s t e m  of i so the rma l  and ad iaba t ic  
cu rves  of the plane f igure ;  H 1 and H 2 a r e  functions of 
the coord ina tes  ql and q2; ds l  and ds  2 a r e  the d i f f e r en -  
t i a l s  of the  ad iaba t ic  and i s o t h e r m a l  a r c s ;  m,  n, M, 
and N a r e  cons tan ts ;  f and F a r e  symbols  of funct ions;  
II is  the conduct ivi ty  of the plane f igure ;  R i s  the 
r e s i s t a n c e  of the plane f igure;  II* and R* a r e  the con-  
duct ivi ty  and r e s i s t a n c e  of the t r a n s p o s e d  f igure ;  S is  
the f igure  a r e a ;  l, 5, a ,  b,  c,  d, and h a r e  var ious  
l Inea r  d i m e n s i o n s ;  r 2 and r i a r e  the l a rge  and s m a l l  
r a d i i  of the  r ing;  ~ and ~ a r e  angles ;  i is  an in teger ;  
x is  a coord ina te .  
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